
Present and Future Computing
Requirements for PETSc

Jed Brown jedbrown@mcs.anl.gov

Mathematics and Computer Science Division, Argonne National Laboratory
Department of Computer Science, University of Colorado Boulder

NERSC ASCR Requirements for 2017
2014-01-15



Extending PETSc’s Hierarchically Nested Solvers

ANL Lois C. McInnes, Barry Smith, Jed Brown, Satish Balay

UChicago Matt Knepley

IIT Hong Zhang

LBL Mark Adams

Linear solvers, nonlinear solvers, time integrators, optimization
methods (merged TAO)

Maximize versatility and efficiency for existing and new applications

Performance portability from laptops to Top 10 systems

Algorithm R&D for fundamental bottlenecks (e.g., memory
bandwidth)



Library-oriented workflow
Partner with specific applications, but provide features to all

Recognize commonality, simple and versatile abstractions, reusable
implementation
We don’t know most of our users, avg 50 emails/day
We hope to hear about problems (algorithmic/convergence,
performance, portability). Respond quickly.

Erratic use of supercomputing
New development on laptops, workstations, and small servers
Need to test new algorithm or new implementation
Validate our expected performance models, find bottlenecks
User reports scalability problem and we need to reproduce

Very short duration jobs across a range of sizes
Strong and weak scaling studies
Large jobs rarely run for more than 10 minutes
Small runs take longer for strong scaling (up to a couple hours)
Debug our code, user code (occasionally), and system
implementation (e.g., MPI)
1-2 million hours at NERSC and ALCF/OLCF



Computational characteristics

Assembled sparse linear algebra
Arithmetic Intensity < 0.25 flops/byte (cf. hardware at 8 flops/byte)
Comfortable abstraction
Adaptive coarsening, problems with poor geometric/multilevel
structure
Research: find higher level structure (UQ, implicit Runge-Kutta)
Research: matrix-free, nonlinear methods, exotic
multigrid/ephemeral data

Communication
Neighbor “halo exchange” (bounded number of neighbors)
Long-range communication to coarse process sets
Reductions (blocking and non-blocking) where mathematically
necessary (orthogonality)



Research exemplars

1 2 3 4 5 6 7
polynomial order

102

103

104

by
te

s/
re

su
lt

1 2 3 4 5 6 7
polynomial order

102

103

104

flo
ps

/re
su

lt

tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

Implicit
Runge-Kutta

G = I ⊗S+ J ⊗ I

(a) Initial
solution. (b) Increment.

(c) Smoothed error
without τ .

(d) Smoothed error
with τ .



What is “scalability”?
Transient simulation does not weak scale.

Fixed turn-around needed: policy, manufacturing/supply-chain,
active control, real-time guidance (field work, surgery, etc.)
d-dimensional problem, increase resolution by 2×.
Data increases by 2d , but we need 2× more time steps (hyperbolic).
With perfect scaling, we use 2d+1 more cores.
Local data changes by 2d/2d+1 = 1

2
More applications feeling this

Asymptotics are relentless
New analysis requires more solves in sequence

From forward simulation to optimization with uncertainty . . .
New physics and higher fidelity observation requires more
calibration/validation

Other applications are safe for now
Steady-state solves with scalable methods
Transient with a small number of time steps
Maximize resolution/problem size – memory-constrained

PETSc emphasizes versatility



What is “scalability”?
Transient simulation does not weak scale.

Fixed turn-around needed: policy, manufacturing/supply-chain,
active control, real-time guidance (field work, surgery, etc.)
d-dimensional problem, increase resolution by 2×.
Data increases by 2d , but we need 2× more time steps (hyperbolic).
With perfect scaling, we use 2d+1 more cores.
Local data changes by 2d/2d+1 = 1

2
More applications feeling this

Asymptotics are relentless
New analysis requires more solves in sequence

From forward simulation to optimization with uncertainty . . .
New physics and higher fidelity observation requires more
calibration/validation

Other applications are safe for now
Steady-state solves with scalable methods
Transient with a small number of time steps
Maximize resolution/problem size – memory-constrained

PETSc emphasizes versatility



Indirect Challenges
Irresponsible library dependencies

Difficult to install, non-portable, bad error-reporting
Lack of 64-bit integers, __float128
Not scalable in P (e.g., ParMETIS), assume non-empty subdomains

Misbehaving system software
Broken features that we cannot test for

getpwuid on BG/Q exists, but calling it rolls the dice between
returning NULL, returning a valid pointer with junk, returning an
invalid pointer, and crashing the program without returning.
MPI_Bcast and MPI_Comm_split deadlocking for large core count
Users of various skill levels spend time tracking down issues and
talking to us.

Useless performance and fragile run-time configuration
No asynchronous progress for MPI_Iallreduce in MPT-5.6+
MPICH_ASYNC_PROGRESS helps a little (few percent)
Affinity for async progress thread

User knowledge and discipline
Module environment changes between configure and make
Portability limited by poorly-written code or build system
Don’t know about the barbed wire and broken glass



Strategies for New Architectures
Choose the right tool for the job.
Typical GPU users are the least competent and have the least realistic
expectations
CUDA (CUSP & CUSPARSE) and OpenCL (ViennaCL) Mat & Vec
Problem for matrix and vector assembly

Bad abstractions for calling from thread block. New kernel launches
imply moving bulky intermediate to global memory.

User must write GPU code if they wish to have nonlinear residuals and
matrix assembly use GPUs (Amdahl)
Coupling apps/libs with different threading (OpenMP, TBB, pthreads)
Defer choice of threading model to run-time (threadcomm)
Less consistent performance, fragile run-time configuration
Recommend MPI-only for most users
Intel MIC is an abject failure of hardware and software. Less efficient
than Xeon for dense QR (all sizes), advertise useless OpenCL stack.
Maybe the next generation will be acceptable.



Some unpopular opinions
DSL — informally-specified language with immature compiler

Syntax or semantics?
Ability to use legacy (mature) code? Debuggability?

Where is the fundamental complexity?
Math and CS researchers often self-select a distorted perspective
For long-term success, most code is written by domain scientists
Material models, MD force models, ML feature extraction
“Kernels” can have sprawling dependencies and > 100kLOC
Legacy and new experiments, written by non-experts

Granularity, static versus dynamic, versatility
Small subdomains: surface area big compared to volume
Over-decomposition lengthens the critical path
We hear about 323 patches/subdomains

How efficient is one 83 patch/node? 46? 100 fields/cell?

Frequency of performance variation compared to latency to
redistribute or steal
Period of interruption/OS jitter
Time between algorithmically-required data dependency?



Summary

New algorithmic modifications become useful (scaling and
hardware balance)

Exotic low-communication multigrid
Nonlinear and matrix-free methods
Tensor product solvers (implicit Runge-Kutta, stochastic Galerkin)
Efficient solver support for new discretizations

PETSc runs at NERSC need to keep pace with diverse user group
Recommendations

Emphasize versatility
Identify “cooked” performance experiments

Unrealistic problem sizes/turn-around time
Artifical configurations
Normalize by energy efficiency/acquisition cost/TCO, not shrink-wrap

Performance reproducibility, diagnostics, debugging
Complicated execution environments will require a lot of education
and a lot of support by third parties.


